
Journal of Global Optimization 25: 345–362, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

345

New Interval Analysis Support Functions Using
Gradient Information in a Global Minimization
Algorithm

L.G. CASADO1, J.A. MARTÍNEZ1, I. GARCÍA1 and YA.D. SERGEYEV2

1Computer Architecture & Electronics Dpt., University of Almería, Cta. Sacramento SN, 04120
Almería. Spain. E-mail: leo@ace.ual.es 2ISI-CNR c/o DEIS, Universitá della Calabria, 87036
Rende (CS) Italy, and University of Nizhni Novgorod, Nizhni Novgorod, Russia. E-mail:
yaro@si.deis.unical.it

Abstract. The performance of interval analysis branch-and-bound global optimization algorithms
strongly depends on the efficiency of selection, bounding, elimination, division, and termination rules
used in their implementation. All the information obtained during the search process has to be taken
into account in order to increase algorithm efficiency, mainly when this information can be obtained
and elaborated without additional cost (in comparison with traditional approaches). In this paper a
new way to calculate interval analysis support functions for multiextremal univariate functions is
presented. The new support functions are based on obtaining the same kind of information used in
interval analysis global optimization algorithms. The new support functions enable us to develop
more powerful bounding, selection, and rejection criteria and, as a consequence, to significantly
accelerate the search. Numerical comparisons made on a wide set of multiextremal test functions
have shown that on average the new algorithm works almost two times faster than a traditional
interval analysis global optimization method.

Key words: Global optimization, Interval arithmetic, Branch-and-bound

1. Introduction

In this paper the problem of finding the global minimum f ∗ of a real valued one-
dimensional continuously differentiable function f : S → R, S ⊂ R, and the
corresponding set S∗ of global minimizers is considered, i.e.:

f ∗ = f (s∗) = min{f (s) : s ∈ S}, s∗ ∈ S∗. (1)

In contrast to one-dimensional local optimization problems which were very well
studied in the past, univariate global optimization problems are in the area of in-
terest of many researchers nowadays (see, for example, [1, 2, 3, 4, 6, 10, 9, 11, 14,
16, 15, 17, 21, 27, 30, 32]). Such an interest is explained by the existence of a large
number of applications where it is necessary to solve this kind of problem (see
[2, 10, 12, 29, 30, 31]). On the other hand, numerous approaches (see, for example,
[5, 11, 13, 18, 19, 22, 23, 28, 31]) enable us to generalize to the multidimensional
case methods developed to solve univariate problems.

346 L.G. CASADO ET AL.

In those cases where the objective function f (x) is given by a formula, it is
possible to use an interval analysis branch-and-bound approach to solve problem
(1) (see [13, 19, 20, 23]). A general global optimization algorithm based on this
approach is shown in Algorithm 1.

ALGORITHM 1. A general interval branch-and-bound global optimization al-
gorithm.

Funct IGO(S, f)
1. Set the working list L := {S} and the final list Q := {}
2. while (L 	= {})
3. Select an interval X from L

4. if X cannot be eliminated
5. Divide X generating Xi, i = 1 . . . n
6. if Xi satisfies the termination criterion
7. Store Xi in Q
8. else
9. Store Xi in L

10. return Q

This algorithm selects the next interval to be processed (selection rule, line 3),
which can be totally or partially rejected when it is guaranteed that it does not
contain any global minimizer, (elimination rule, line 4). This elimination process
is carried out using information obtained from the inclusion functions which return
an enclosure of the real range of f (x) (and in some cases of f ′(x) and f ′′(x)) on
X (bounding rule). If the interval cannot be rejected, it is subdivided (division rule,
line 5). When the generated subintervals are informative enough, they are stored in
the final list (termination rule, line 7). Otherwise, they are stored in the working list
for further processing (line 9). The algorithm finishes when there are no intervals to
be processed (line 2) and returns the set of intervals with valuable information (line
10). An overview on theory and history of these rules can be found, for example,
in [13].

Of course, every concrete realization of Algorithm 1 depends on the available
information about the objective function f (x). In this paper it is supposed that
inclusion functions can be evaluated for f (x) and its first derivative f ′(x) on X.
Thus, the information about the objective function which can be obtained during
the search is:

F(x), F (X), F ′(X), (2)

where

− X = [x, x] : Interval defined by its lower and upper bound.
− F(X) = [F(X), F (X)] : Interval inclusion function of f (x) at X obtained by

interval arithmetic. For the real range of f (x) over X the following inclusion
f (X) ⊆ F(X) holds.

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 347

− F(x): Interval inclusion of the function f (x) at a point x ∈ X.
− F ′(X) = [F ′(X), F ′(X)]: Interval inclusion function of f ′(x) over X.

When the information stated in (2) is available, the rules of a traditional realization
of Algorithm 1 can be written more precisely. Below we describe a Traditional
Interval analysis global minimization Algorithm with Monotonicity test (TIAM)
which is frequently used for solving the problem (1) using the information stated
in (2) (see [13]).

Selection rule: Among all the intervals Xi stored in the working list L select an
interval X such that F(X) = min{F(Xi) : Xi ∈ L}.

Bounding rule: The fundamental theorem of interval arithmetic provides a natural
and rigorous way to compute an inclusion function. In the present study the
inclusion function F of the objective function f is available by the extended
interval arithmetic (see [7, 13]).

Elimination rule: Common elimination rules are the following:

Midpoint test: An interval X is rejected when F(X) > f ,̃ where f ˜ is the
best known upper bound of f ∗. The value of f ˜ = [f ˜, f ˜] is updated
by evaluating F(m(X)), where m(X) = (x + x)/2 is the midpoint of the
interval X.

Cut-off test: When f ˜ is improved, all intervals X stored in the working and
final lists satisfying the condition F(X) > f ˜ are rejected.

Monotonicity test: If for an interval X the condition 0 /∈ F ′(X) is fulfilled,
then this means that the interval X does not contain any minimum and,
therefore, can be rejected.

Division rule: Usually two subintervals are generated using m(X) as the subdivi-
sion point (bisection).

Termination rule: A parameter ε determines the desired accuracy of the prob-
lem solution. Therefore, intervals X that have a width w(X) less than ε, i.e.,
w(X) � ε, w(X) = x − x, are moved to the final list Q. Other termination
criteria can be found in [23].

As can be seen from the above description, the algorithm evaluates lower bounds
for f (x) in each interval separately, without considering some valuable information
which can be obtained from other intervals. The value of F ′(X) is only used by
the Monotonicity test and is not connected with the information obtained from
F(m(X)) and F(X). Only the value of F(X) is used in order to obtain a lower
bound for f (x) over X, all the rest of the search information is not used for this
goal. The only exchange of information between the intervals is done through f .̃

In Lipschitz global optimization there exist algorithms for solving the problem
stated in (1). They evaluate lower bounds by constructing support functions (in fact,

348 L.G. CASADO ET AL.

F(X) can be viewed as a special support function – constant – for f (x) over X) for
the objective function (see, for example, [6, 10, 11, 17, 18, 21, 22, 26, 27, 30, 31]).
They work in a similar way to the TIAM approach: support functions are built
and successively improved in order to obtain a better lower bound for the global
minimum. Of course, these support functions are completely different and are built
on the basis of different ideas. An interesting aspect of the support function concept
in the context of this paper is found in the use of the search information. When a
support function is built for an interval [a, b], the information regarding neighbours
[c, a] and [b, d] is also used in order to construct a better support function and to
obtain a better lower bound for f ∗.

In this paper, a new Interval analysis global minimization Algorithm using
Gradient information (IAG) is proposed for solving problem (1). It uses the in-
formation stated in (2) as TIAM does but, due to a more efficient usage of the
search information, it constructs support functions which are closer to the objective
function and enables us to obtain better lower bounds. Hereinafter it will be shown
that this new method (IAG) has quite a promising performance in comparison with
the traditional TIAM method.

The rest of the paper is structured as follows: In Section 2 some theoretical res-
ults explaining construction of the support functions and lower bounds are presen-
ted. The algorithm IAG is described in Section 3. Numerical experiments compar-
ing performance of TIAM and IAG are presented in Section 4. Finally, in Section 5
some conclusions and future work are presented.

2. New support functions based on gradient information

In order to proceed with the description of the new algorithm, theoretical results are
presented to explain how the new support functions and the corresponding lower
bounds are constructed in IAG. The description starts with the following lemma
illustrated in Figure 1, in a similar way as was done for non-differentiable functions
in both, Lipschitz optimization (see [9, 11, 18, 21, 22, 27, 30, 31]) and approaches
based on slope evaluation [24].

LEMMA 1. Given a continuously differentiable function f : S → R, where S is a
closed interval in R, an interval X ⊆ S, an enclosure F(c) of f (c), c ∈ X, and an
enclosure F ′(X) of f ′(x), x ∈ X then the following bounds hold for f (x), x ∈ X:

F(c)+ min

{
F ′(X) · (x − c)

F ′(X) · (x − c)

}
� f (x) � F(c)+ max

{
F ′(X) · (x − c)

F ′(X) · (x − c)

}

Proof. It follows from the mean-value theorem that there exists a point ξ ∈ [x, c]
such that

f (x) = f (c)+ f ′(ξ) · (x − c). (3)

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 349

X

F’(X)__F’(X)
__

F’(X)__

F’(X)
__

F(c)

f~

V1 V2

C

Figure 1. Graphical example of Lemma 1 and Theorem 2.

Extending equation (3) to intervals the following inclusion

f (x) ⊆ F(c)+ F ′(X) · (x − c), x, c ∈ X, (4)

is obtained. Let us take a generic point x ∈ X. Three results can be deduced from
(4) depending on the mutual disposition of the points c and x in X:

(a) x = c:

f (x) ⊆ F(c).

(b) x > c:

f (x) � F(c)+ F ′(X) · (x − c),

f (x) � F(c)+ F ′(X) · (x − c).

(c) x < c:

f (x) � F(c)− F ′(X) · (c − x) = F(c) + F ′(X) · (x − c),

350 L.G. CASADO ET AL.

f (x) � F(c)− F ′(X) · (c − x) = F(c) + F ′(X) · (x − c).

Lemma is proved.

This Lemma allows us to construct new interval analysis support functions for
f (x). It can be seen from Figure 1 that it is similar to the ones built in Lipschitz
global optimization (see, for example, [10, 21, 22, 26, 31]). The Lipschitz support
functions are piece-wise linear. The slope of each linear piece is L or −L, where
L is the Lipschitz constant. In our approach, for every interval X the slopes of
support functions are equal to F ′(X) for all x � c and to F ′(X) for all x � c (see
Figure 1).

The following results are the basis for the new support functions and explain
how the new lower bounds for f ∗ are evaluated.

THEOREM 2. Let X and S be closed intervals such that X ⊆ S ⊂ R and let
f : S → R be a continuously differentiable function. Let’s suppose that for a point
c ∈ X a lower bound lb(c) of f (c) is determined and an enclosure F ′(X) of f ′(X)
is obtained. For a given current upper bound f ˜ of f ∗, there exists a set V ⊆ X

where all the global minimizers of X, if any, are included.
Proof. For a minimizer point x∗ ∈ S∗ it applies that f (x∗) � f .̃ Combining

with Lemma 1 a minimizer x∗ ∈ X ∩ S∗ has to fulfill:

lb(c)+ min

{
F ′(X) · (x∗ − c)

F ′(X) · (x∗ − c)

}
� f (x∗) � f ˜

and therefore it can only be located in the following set:

V =
{
x ∈ X : lb(c)+ min

{
F ′(X) · (x − c)

F ′(X) · (x − c)

}
� f ˜

}

From Theorem 2 it can be derived that if f ˜ < lb(c) then c /∈ S∗ and V =
V1 ∪ V2 can be constructed as:

V1 =
{

{x ∈ X : x � c − lb(c)−f ˜
F ′(X) }, when F ′(X) > 0

∅ otherwise
(5)

V2 =
{

{x ∈ X : x � c − lb(c)−f ˜
F ′(X) }, when F ′(X) < 0

∅ otherwise
(6)

As an example, V1, V2 have been depicted in Figure 1 for the case F ′(X) > 0
and F ′(X) < 0.

Notice that V can be obtained in a similar way by applying the interval Newton
operator to find the roots of the function f (x) − f ˜ on X, under the Theorem 2
conditions [8, 19, 20].

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 351

Figure 2. Interval V is the region which can contain global minimizers. The set X\V does
not contain any global minimizer.

THEOREM 3. Let us consider a continuously differentiable function f : S → R,
where S is a closed interval in R and intervals X, Y such that X ⊆ Y ⊆ S. If:
1. lower bounds lb(x) and lb(x) of, respectively, f (x) and f (x), have been

evaluated;
2. a current upper bound f ˜ of f ∗ is such that

f ˜ � min{lb(x), lb(x)};
3. bounds G = F ′(Y) < 0 and G = F ′(Y) > 0 have been obtained.

Then, only the interval

V = [x − lb(x)− f ˜
G

, x − lb(x)− f ˜
G

], V ⊆ X, (7)

can contain global minimizers and a lower bound z(X, lb(x), lb(x),G) of f (x)
over the interval X can be calculated as follows:

z(X, lb(x), lb(x),G) = lb(x) · G− lb(x) · G
w(G)

+ w(X) · G ·G
w(G)

, (8)

where w(G) = G −G (see Figure 2).

Proof. Applying Theorem 2 with c = x, interval V2 from (6) is obtained. The
same operation with the point c = x gives us interval V1 from (5). Then, interval
V from (7) is obtained as V = V1 ∩ V2.

Let us now prove the formula (8). Since X ⊆ Y , F ′(X) ⊆ F ′(Y) and, by
applying the mean-value theorem, we have

f (x) � lb(x)+ F ′(X) · (x − x) � lb(x) +G · (x − x), x ∈ X,

352 L.G. CASADO ET AL.

and

f (x) � lb(x)+ F ′(X) · (x − x) � lb(x) +G · (x − x), x ∈ X.

From these two inequalities follows

f (x) � d(x) = max

{
lb(x)+G · (x − x)

lb(x)+G · (x − x)

}
, x ∈ X. (9)

so

z(X, lb(x), lb(x),G) = min d(x), x ∈ X

and

f (X) � z(X, lb(x), lb(x),G)

which proves the theorem.

COROLLARY 4. If for an interval X the inequality z(X, lb(x), lb(x),G) > f ˜ is
fulfilled then it can be derived that X does not contain any global minimizer.

Proof. Proof is evident and so it is omitted.

Let us now return to the problem (1). We can use the information stated in (2)
during the global search. Thus, by using F(X) together with the function d(x)

from (9) we can build a new support function D(x) for f (x) over each interval X:

D(x) = max{F(X), d(x)}, x ∈ X. (10)

The new lower bound Fz(X) for f (x) over the interval X is calculated in the
following way

Fz(X) = max{F(X), z(X, lb(x), lb(x),G)} = minD(x), x ∈ X. (11)

The essence of the algorithm is that for V = [v, v] obtained from interval X
according to (7), the current value of f ˜ is a lower bound of f at v and v; i.e.
f ˜ � f (v) and f ˜ � f (v), so lb(v) = lb(v) = f ˜ are easily available bounds.

3. Description of the new algorithm

On the basis of theoretical results presented in the previous section we can de-
termine new rules for Algorithm 1 in order to introduce the new Interval analysis
global minimization Algorithm using Gradient information (IAG) (described in
Algorithm 2):

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 353

Selection rule : Select an interval X such that

Fz(X) = min{Fz(Xi) : Xi ∈ L},
where L is the working list. Elements of L are ordered by non-decreasing
values of Fz(Xi) as the first ordering criterion and non-increasing order with
respect to the age of the intervals as the second ordering criterion. Therefore,
the selected interval will always be at the head of the working list.

Bounding rule : The lower bound Fz(X) from (11) is used.
Elimination rule : Four elimination rules are used:

Monotonicity test : As previously described in Section 1.
RangeUp test: An interval X is rejected if f ˜ < Fz(X).
Gradient test: The subregion {X\V }, where V is defined by (7), is rejected.

Of course, when V = ∅ the whole interval X can be eliminated.
Cut-off test : When f ˜ is improved, all intervals X stored in the working and

final lists for which the condition Fz(X) > f ˜ is fulfilled are rejected. Note,
that this Cut-off test is different from the Cut-off test of TIAM algorithm
where the condition F(X) > f ˜ was used.

Division rule : Let’s suppose an interval X that has been obtained as a result of ap-
plying RangeUp and Gradient tests to an interval Y and then also suppose that
X is stored in the working list L. If the interval X is chosen for subdivision,
m(X) is used as the subdivision point. Note, that in general m(X) 	= m(Y)

and therefore this division rule does not coincide with the division rule of the
TIAM algorithm.

ALGORITHM 2. Interval analysis global minimization Algorithm using Gradient
information (IAG)

Funct IAG(S, F, ε)
1. L = {}; Q = {}
2. if (F(s) < F(s))
3. x˜ := s; f ˜ := F(s)

4. else
5. x˜ := s; f ˜ := F(s)

6. if (0 /∈ F ′(S)) Monotonicity Test
7. return (f ∗ := f ;̃ s∗ := x˜)
8. lb(s) = F(s); lb(s) = F(s)

9. X := GradTest (S, lb(s), lb(s), f ˜, F ′(S))
10. lb(x) := lb(x) := f ˆ(X) := f ˜
11. Fz(X) := max{F(X), z(X, lb(x), lb(x), F ′(S))} Lower bound of f (X)
12. if (w(X) � ε)
13. Save {X, f (̂X), Fz(X)} in Q
14. else

354 L.G. CASADO ET AL.

15. Save {X, f (̂X), Fz(X)} in L
16. while (L 	= {})
17. {X, f ˆ(X), Fz(X)} := Head(L)
18. comment: X := Xj : Fz(Xj) = min{Fz(Xi)}, ∀Xi ∈ L

19. if (0 ∈ F ′(X)) Monotonicity Test
20. if (F(m(X)) < f ˜)
21. f ˜ := F(m(X))

22. CutOffTest (f ˜, L,Q) Remove Xi : Fz(Xi) > f ˜ from {L,Q}
23. X1 = [x,m(X)]; X2 = [m(X), x] Interval Subdivision
24. lb(x1) := lb(x2) := f ˆ(X)
25. lb(x1) := lb(x2) := F(m(X))

26. for i := 1,2
27. Xi := GradTest (Xi, lb(xi), lb(xi), f ˜, F ′(X))
28. lb(xi) := lb(xi) := f ˆ(Xi) := f ˜
29. if (w(Xi) > 0) Xi is not fully rejected
30. Fz(Xi) := max{F(Xi), z(Xi, lb(xi), lb(xi), F

′(X))}
31. if (Fz(Xi) � f ˜) RangeUp test
32. if (w(Xi) � ε)
33. Save {Xi, f ˆ(Xi), Fz(Xi)} in Q
34. else
35. Save {Xi, f ˆ(Xi), Fz(Xi)} in L
36. return Q, f̃

Every element Xi in the working and final lists, L and Q, respectively, is a
structure with the following data:

− Bounds xi and xi of the interval Xi .

− f ˆ(Xi) = [f ˆ(Xi), f ˆ(Xi)]; the value of f ˆ(Xi) is only updated with the value
f ˜ had when the interval Xi was created.

− Fz(Xi), a lower bound of f (Xi).

ALGORITHM 3. Gradient test
Funct GradTest(X, lb(x), lb(x), f ˜,G)

1. if (lb(x) > f ˜)

2. V1 = [x − lb(x)−f ˜
G

, ∞)

3. X := V1 ∩ X

4. if (w(X) > 0 and lb(x) > f ˜)

5. V2 = (−∞, x − lb(x)−f ˜
G

]
6. X := V2 ∩ X

7. return X

Let us comment Algorithm 2. IAG algorithm starts evaluating F(s) and F(s)

(line 2) and initializing x˜ and f ˜ = F(x˜) (lines 3 and 5). If the monotonicity

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 355

z(X)_ 22

F’(S)__

F(X)_

z(X)_

F’(S)
__

X
S

F(X)

F(m(X))

_

F’(X)__

22F(X)_

F’(X)
__

11

z(X)_ 11

z(X)_ 22

S

F(m(X))

z(X)_ 11

F’(X)__

X2X1

S

X1 X2
X X

F’(X)
__

F’(X)__

F’(X)__

F’(X)
__

F’(X)
__f~

f~

22F(X)_

f~

lb(x)
_

lb(x)_ lb(x)_ lb(x)
_

lb(s)___

lb(s)
_

Fz(X)= max__

__ __

F(X)_ 11

Figure 3. The upper graph is an example of the initial phase of IAG. Bottom graphs show an
example of how the intervals X1 and X2 are built from X. The bottom left hand graph shows
the case F(m(X)) > f ˜ and the bottom right hand f ˜ < min{lb(x), lb(x)}. Only shaded areas
can contain f ∗.

test is satisfied (line 6), the algorithm finishes and the solution is given by {f ,̃ x˜}.
Otherwise, lb(s) and lb(s) are initialized (line 8) before applying the Gradient test
(Algorithm 3). In line 9, the Gradient test is applied to the starting interval S. The
GradTest procedure applies Theorems 2 and 3 to S, using c = s and c = s, and
returns an interval X ⊆ S, such that the set of global minimizers of S are also in
X. Lower bounds of f (x) and f (x) (lb(x) and lb(x), respectively) and f ˆ(X) are
set to f ,̃ and Fz(X) is computed (lines 10 and 11). The interval X is stored in the
final list Q (line 13) or in the working list L (line 15), depending on the value of
w(X). This initialization stage is shown in the top graph of Figure 3.

After this initialization stage and while the list L is not empty (line 16), IAG
will select the interval at the head of L (line 17) for further processing. If F ′(X)
does not satisfy the Monotonicity test (line 19), F(m(X)) is evaluated (line 20). If
F(m(X)) provides an upper bound of f ∗ better than f ,̃ f ˜ is updated to F(m(X))
(line 21) and the Cut-off test is applied to the intervals in the working and final
lists (line 22). The interval X is then divided into two subintervals X1 and X2 (line
23). These subintervals inherit from X the lower bound of f (x) in one of their
bounds (line 24) and the other shared bound is set to F(m(X)) (line 25). For each
subinterval Xi, i = {1, 2}, the Gradient test is carried out using the derivative

356 L.G. CASADO ET AL.

information of F at X (F ′(X)) (line 27) instead of the value of F ′(Xi) which has
not been evaluated. Using the derivative information of F at X we avoid the need
for additional computations of F ′(Xi), (i = {1, 2}) which would be useless if
these intervals were never chosen for subdivision. If an interval Xi, (i = {1, 2}) is
not rejected (line 29), Fz(Xi) is evaluated using also the value of F ′(X) (line 30).
Only when the RangeUp test is not satisfied (line 31), the interval Xi will be saved
in the final (line 33) or working lists (line 35).

Bottom graphs of Figure 3 show how the intervals X1 and X2 are built from X.
In case of F(m(X)) > f ˜ (see lower left hand graph), interval X1 and X2 can be
shortened by applying the GradTest procedure. In addition, if f ˜ < lb(x) and/or
f ˜ < lb(x) (see lower right hand graph of Figure 3), X1 and/or X2 can be shortened
again by the GradTest procedure. Notice that in the IAG algorithm, if f ˜ < lb(x)

then f ˜ < lb(x), too, and vice versa.

4. Numerical results

The new algorithm IAG has been numerically compared with the method TIAM on
a set of forty test functions. This set of test functions is described in Table 1& and
has been taken from [3, 4, 24]. The search region, the number of local and global
minimizers and the numerical value of the global optimum (rounded to six decimal
digits) are shown for all the functions. For both algorithms the stopping criterion
was: w(X) � ε = 10−6.

Table 2 shows numerical comparison between TIAM and IAG. Column NFE

presents the number of interval function evaluations, i.e., the number of F(X) eval-
uations plus the number of interval point evaluations F(x), column NDE shows
the number of interval function evaluations of the derivative F ′(X), and column
w(f ∗) shows the approximated width of the interval containing the global optimum

(given by [F(X), f̃] and [Fz(X), f̃] for TIAM and IGO algorithms, respectively,
with X=Head(Q)). If TM and TG represent NFE +NDE for algorithms TIAM
and IAG, respectively, column TIAM/IAG shows the values TM/TG, providing
information on the relative speedup of the IAG algorithm compared to the TIAM
algorithm.

It can be seen from Table 2 that the ratio T IAM/IAG is always greater than
one, so IAG outperforms TIAM for all the functions. For this set of functions the
speedup T IAM/IAG ranges between [1.22, 6.98] and in average is 1.78. It can
also be seen from Table 2 that for those functions where TIAM needs a lot of func-

& For functions 31 and 35 the values of ai , ki and ci are:
a = (3.040, 1.098, 0.674, 3.537, 6.173, 8.679, 4.503, 3.328, 6.937, 0.700),
k = (2.983, 2.378, 2.439, 1.168, 2.406, 1.236, 2.868, 1.378, 2.348, 2.268),
c = (0.192, 0.140, 0.127, 0.132, 0.125, 0.189, 0.187, 0.171, 0.188, 0.176) and
a = (4.696, 4.885, 0.800, 4.986, 3.901, 2.395, 0.945, 8.371, 6.181, 5.713),
k = (2.871, 2.328, 1.111, 1.263, 2.399, 2.629, 2.853, 2.344, 2.592, 2.929),
c = (0.149, 0.166, 0.175, 0.183, 0.128, 0.117, 0.115, 0.148, 0.188, 0.198), respectively.

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 357

Table 1. Description of the test functions. N : function’s ID , S: the search interval, LM: the number
of local minimizers, GM: the number of global minimizers, and f ∗: the value of global minimum
(rounded to six decimal digits)

N Function f (x) S LM GM f ∗

1 e−3x − sin3 x [0, 20] 4 1 e
−27π

2 − 1

2
∑5

k=1 − cos[(k + 1)x] + 4 [0.2, 7.0] 7 1 -1.0

3 (x − x2)2 + (x − 1)2 [−10, 10] 1 1 0.0

4 (3x − 1.4) sin(18x) + 1.7 [0.2, 7.0] 21 1 -17.582872

5 2x2 − 3/100e−(200(x−0.0675))2 [−10, 10] 1 1 -0.020903

6 cos(x) − sin(5x)+ 1 [0.2, 7.0] 6 1 -0.952897

7 −x − sin(3x) + 1.6 [0.2, 7.0] 4 1 -6.262872

8 x + sin(5x) [0.2, 7.0] 7 1 -0.077590

9 −e−x sin(2πx)+ 1 [0.2, 7.0] 7 1 0.211315

10 e−x sin(2πx) [0.2, 7.0] 7 1 -0.478362

11 −x + sin(3x) + 1 [0.2, 7.0] 5 1 -5.815675

12 x sin(x) + sin(10x/3) + ln(x)− 0.84x + 1.3 [0.2, 7.0] 4 1 -7.047444

13 sin(x) + sin(10x/3) + ln(x) − 0.84x [2.7, 7.5] 3 1 -4.601308

14 ln(3x) ln(2x) − 0.1 [0.2, 7.0] 1 1 -0.141100

15
∑5

k=0 k cos[(k + 1)x + k] + 12 [0.2, 7.0] 8 1 -0.870885

16 − ∑5
k=1 k sin[(k + 1)x + k] + 3 [0.2, 7.0] 7 1 -9.031249

17 sin2(1 + (x − 1)/4) + ((x − 1)/4)2 [−10, 10] 1 1 0.475689

18
√
x sin2(x) [0.2, 7.0] 3 2 0.0

19 x2 − cos(18x) [−5, 5] 29 1 -1.0

20 ex
2 [−10, 10] 1 1 1.0

21 (x2/20) − cos(x) + 2 [−20, 20] 7 1 1.0

22 cos(x) + 2 cos(2x)e−x [0.2, 7.0] 2 1 -0.918397

23 (x + sin(x))e−x2 [−10, 10] 1 1 -0.824239

24 2 sin(x)e−x [0.2, 7.0] 2 1 -0.027864

25 2 cos(x) + cos(2x) + 5 [0.2, 7.0] 3 2 3.5

26 esin(3x) [0.2, 7.0] 5 3 0.367879

27 sin(x) cos(x) − 1.5 sin2(x) + 1.2 [0.2, 7.0] 3 2 -0.451388

28 sin(x) [0, 20] 4 3 -1.0

29 2(x − 3)2 − ex/2 + 5 [0.2, 7.0] 1 1 -0.410315

30 −esin(3x) + 2 [0.2, 7.0] 4 4 -0.718282

31 − ∑10
i=1 1/((ki (x − ai))

2 + ci) [0, 10] 8 1 -14.592652

32 sin(1/x) [0.02, 1] 6 6 -1.0

33 − ∑5
k=1 k sin((k + 1)x + k) [−10, 10] 20 3 -12.031249

34 (x2 − 5x + 6)/(x2 + 1) − 0.5 [0.2, 7.0] 1 1 -0.535534

35 − ∑10
i=1 1/((ki (x − ai))

2 + ci) [0, 10] 7 1 -13.922345

36 (x + 1)3/x2 − 7.1 [0.2, 7.0] 1 1 -0.35

37 x4 − 12x3 + 47x2 − 60x − 20e−x [−1, 7] 1 1 -32.781261

38 x6 − 15x4 + 27x2 + 250 [−4, 4] 2 2 7.0

39 x4 − 10x3 + 35x2 − 50x + 24 [−10, 20] 2 2 -1.0

40 24x4 − 142x3 + 303x2 − 276x + 3 [0, 3] 1 1 1.0

358 L.G. CASADO ET AL.

Table 2. Results of numerical comparison between TIAM and IAG

TIAM IAG

N NFE NDE w(f ∗) NFE NDE w(f ∗) TIAM/IAG

1 104 27 6.2e-14 75 20 2.9e-14 1.38

2 104 27 2.9e-13 72 21 4.7e-12 1.41

3 107 27 1.1e-13 88 22 3.0e-13 1.22

4 105 34 2.4e-06 79 25 1.3e-09 1.34

5 112 35 1.6e-07 88 26 9.0e-12 1.29

6 110 39 2.4e-07 75 25 1.4e-11 1.49

7 112 41 8.1e-07 69 25 8.9e-14 1.63

8 112 41 8.1e-07 66 22 1.1e-11 1.74

9 115 41 6.4e-07 76 25 4.0e-13 1.54

10 116 42 3.9e-07 83 28 5.3e-12 1.42

11 118 44 8.1e-07 79 28 1.4e-12 1.51

12 118 44 1.9e-06 74 26 3.5e-12 1.62

13 132 49 4.8e-07 81 30 5.0e-12 1.63

14 139 50 4.0e-07 91 31 7.4e-12 1.55

15 144 49 9.7e-06 102 34 2.3e-11 1.42

16 152 51 1.1e-05 113 35 3.0e-11 1.37

17 167 63 1.3e-07 114 39 3.7e-14 1.50

18 184 47 5.5e-15 140 38 1.4e-13 1.30

19 191 48 4.4e-16 77 23 5.5e-16 2.39

20 199 50 1.1e-15 116 38 1.1e-15 1.62

21 207 52 4.4e-16 114 36 6.6e-16 1.73

22 209 75 8.9e-08 132 46 4.0e-13 1.60

23 218 81 6.7e-07 146 50 9.6e-13 1.53

24 220 83 2.3e-08 152 50 4.7e-14 1.50

25 231 88 1.4e-06 167 61 5.3e-13 1.40

26 268 68 2.6e-14 214 57 4.3e-14 1.24

27 247 92 7.4e-07 191 67 1.3e-12 1.31

28 292 74 7.2e-15 206 55 2.8e-15 1.40

29 301 113 2.8e-06 174 60 1.6e-12 1.77

30 352 89 4.9e-15 270 71 9.1e-14 1.29

31 139 47 5.1e-06 113 35 2.8e-10 1.26

32 476 120 2.6e-11 384 101 2.2e-12 1.23

33 459 154 8.2e-06 333 108 2.8e-10 1.39

34 460 176 5.9e-07 259 91 7.4e-13 1.82

35 599 204 1.2e-05 293 96 5.3e-10 1.50

36 711 271 2.7e-06 331 114 2.4e-12 2.21

37 824 276 7.5e-05 288 101 5.9e-11 2.83

38 807 310 1.5e-03 498 176 1.2e-08 1.66

39 6041 2265 4.0e-04 1364 456 2.3e-09 4.56

40 6952 2534 1.4e-03 1020 340 2.9e-09 6.98

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 359

Figure 4. Graphical representation for the execution of TIAM (left hand graph) and IAG (right
hand graph) algorithms for function N = 13.

Figure 5. Graphical representation for the execution of TIAM (left hand graph) and IAG (right
hand graph) algorithms for function N = 25.

tion evaluations the largest values of T IAM/IAG were obtained (see functions
N = 39 and N = 40, which obtained speed up of 4.56 and 6.98, respectively).
For most of the functions (33 out of 40) the values of w(f ∗) are narrower for IAG
algorithm than for TIAM one.

Figures 4 and 5 graphically show how algorithms TIAM and IAG work. The
function N = 13 presented in Figure 4 has only one global minimizer while the
function N = 25 (Figure 5) has two global minimizers. In both figures the left hand
graph refers to algorithm TIAM while right hand graphs depict the performance of
algorithm IAG. For all the graphs the termination criterion was w(X) � 0.05.
Horizontal arrows represent the values of f ˜ during the execution. The boxes rep-
resent the margins of all the evaluated intervals X and the lower and upper bounds

360 L.G. CASADO ET AL.

of F(X). For the IAG algorithm, the new support function d(x) from (9) is also
shown.

At the top of the graphs, colored boxes represent the set of rejected intervals
as well as intervals which contain a global minimizer. The color of a box specifies
the criterion responsible for the rejection of that interval (Blue = GradTest proced-
ure, Green = monotonicity test, Red = midpoint and cut-off tests for TIAM and
RangeUp and cut-off tests for IAG, Yellow = Boxes in the final list Q). From these
graphs it is easy to realize how efficient every rejection criterion is.

Figures 4 and 5 show that for these examples more than 50% of the initial
interval S was rejected due to the GradTest procedure. It is also clearly shown that
TIAM had to evaluate more intervals than IAG. Figure 5 shows some intervals
where the best lower bound of f (X) was the one obtained by the computation of
z(X, lb(x), lb(x), F ′(X)) instead of F(X), i.e., that Fz(X) = z(X, lb(x), lb(x),

F ′(X)) took place. It should also be noticed that the TIAM algorithm is unable to
take advantage of the information provided by the evaluation of F(m(X)) when
F(m(X)) > f .̃ In contrast, IAG is able to reduce the interval even in this case
(clearly shown in Figures 4 and 5).

5. A brief conclusion

In this paper a new way to calculate support functions for multiextremal univariate
functions has been presented. The new support functions are based on obtaining the
same kind of information used in interval analysis global optimization algorithms:
interval evaluations of the objective function at a point, on an interval, and inter-
val evaluation of the first derivative of the objective function on an interval, i.e.,
F(x), F (X), and F ′(X).

Traditional interval analysis global optimization algorithms use this information
separately: F(x) is used to obtain an upper bound for the global minimum, F(X) is
used to determine a support function – being a constant – for the objective function
f (x) over X, and, finally, F ′(X) is used in the Monotonicity test for rejecting
intervals which do not contain global minimizers. In contrast, the new method uses
all the information simultaneously in order to construct a support function which
is closer to the objective function. The new support function enables us to develop
more powerful rejection and bounding criteria and to significantly accelerate the
search. In fact, the new algorithm works almost two times faster in comparison
with other traditional interval analysis methods on a wide set of multiextremal test
functions.

The new approach has several possibilities for generalization. First, interval
analysis bounds for F ′(X) can be substituted by other estimates (for example, slope
tools developed in [25] for non-smooth problems) in order to obtain new support
functions. Second, the new method can be generalized to the multi-dimensional
case by the diagonal approach proposed in [22] or by using adaptively constructed
space-filling curves proposed in [28].

SUPPORT FUNCTIONS USING GRADIENT INFORMATION 361

Acknowledgement

The authors would like to thank E.M.T. Hendrix for his useful remarks and sug-
gestions. This work was supported by the Ministry of Education of Spain (CICYT
TIC99-0361) and by the Russian Fund of Basic Research through grant 01-01-
00587.

References

1. Calvin, J. and Žilinskas, A. (1999), On the convergence of the P-algorithm for one-dimensional
global optimization of smooth functions. JOTA 102(3), 479–495.

2. Casado, L. G., García, I. and Sergeyev, Ya. D. (2000), Interval branch and bound algorithm for
finding the First-Zero-Crossing-Point in one-dimensional functions. Reliable Computing 2(6),
179–191.

3. Daponte, P., Grimaldi, D., Molinaro, A. and Sergeyev, Ya. D. (1995), An algorithm for finding
the zero crossing of time signals with Lipschitzeans derivatives. Measurements 16, 37–49.

4. Daponte, P., Grimaldi, D., Molinaro, A. and Sergeyev, Ya. D. (1996), Fast detection of the first
zero-crossing in a measurement signal set. Measurements 19(1), 29–39.

5. Floudas, C. and Pardalos, P. (eds.) (1996), State of the Art in Global Optimization. Compu-
tational Methods and Applications, Vol. 7 of Nonconvex Optimization and its Applications.
Kluwer Academic Publishers, Dordrecht.

6. Gergel, V. P. (1999), A global search algorithm using derivatives. In: Systems Dynamics and
Optimization. N. Novgorod University Press, Norgood, pp. 161–178.

7. Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995), C++ Toolbox for Verified Computing
I: Basic Numerical Problems: Theory, Algorithms, and Programs. Springer, Berlin.

8. Hansen, E. (1992), Global Optimization Using Interval Analysis, Vol. 165 of Pure and applied
mathematics. Marcel Dekker, New York.

9. Hansen, E., Jaumard, B., and Lu, S.-H. (1992a), Global optimization of univariate Lipschitz
functions: 1. Survey and properties. Math. Programming 55, 252–272.

10. Hansen, E., Jaumard, B. and Lu, S.-H. (1992b), Global optimization of univariate Lipschitz
functions: 2. New algorithms and computational comparison. Math. Programming 55, 273–
293.

11. Horst, R. and Pardalos, P. (eds.) (1995), Handbook of Global Optimization, Vol. 2 of Noncovex
optimization and its applications. Kluwer Academic Publishers, Dordrecht.

12. Kalra, D. and Barr, A. H. (1989), Guaranteed ray intersections with implicit surfaces. Computer
Graphics 23(3), 297–306.

13. Kearfott, R. B. (1996), Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, Dordrecht.

14. Lamar, B. (1999), A method for converting a class of univariate functions into d.c. functions’.
Journal of Global Optimization 15, 55–71.

15. Liu, Y. and Teo, K. (1999), A bridging method for global optimization. Journal of Australian
Mathematical Society, Series B 41, 41–57.

16. Locatelli, M. and Schoen, F. (1995), An adaptive stochastic global optimization algorithm for
one-dimensional functions. Annals of Operations Research 58, 263–278.

17. MacLagan, D., Sturge T. and Baritompa, W. (1996), Equivalent methods for global optim-
ization. In: Floudas, C. and Pardalos, P. (eds.) State of the Art in Global Optimization.
Computational Methods and Applications, Kluwer Academic Publications, Dordrecht, pp.
201–212.

18. Mladineo, R. (1992), Convergence rates of a global optimization algorithm. Math. Program-
ming 54, 223–232.

362 L.G. CASADO ET AL.

19. Moore, R. (1966), Interval analysis. Prentice-Hall, Englewood Cliffs, NJ.
20. Neumaier, A. (1990), Interval Methods for Systems of Equations. Cambridge University Press,

Cambridge.
21. Pijavskii, S. A. (1972), An algorithm for finding the absolute extremum of a function’. USSR

Maths. Math. Physics 12, 57–67.
22. Pintér, J. D. (1996), Global Optimization in Action, Vol. 6 of Noncovex Optimization and its

Applications. Kluwer Academic Publishers, Dordrecht.
23. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization. Ellis

Horwood Ltd., Chichester.
24. Ratz, D. (1998), Automatic Slope Computation and its Application in Nonsmooth Global

Optimization. Shaker Verlag, Aachen.
25. Ratz, D. (1999), A nonsmooth global optimization technique using slopes: the one-dimensional

case. Journal of Global Optimization 14(4), 365–393.
26. Sergeyev, Ya. D. (1995), A one-dimensional deterministic global minimization algorithm.

Comput. Maths. Math. Phys 35(5), 705–717.
27. Sergeyev, Ya. D. (1998), Global one-dimensional optimization using smooth auxiliary func-

tions’. Mathematical Programming 81(1), 127–146.
28. Sergeyev, Ya. D. (2000), Efficient strategy for adaptive partition of N-dimensional intervals

in the framework of diagonal algorithms. Journal of Optimization Theory and Applications
107(1), 145–168.

29. Sergeyev, Ya. D., Daponte, P., Grimaldi, D. and Molinaro, A. (1999), Two methods for solving
optimization problems arising in electronic measurement and electrical engineering. SIAM
Journal on Optimization 10(1), 1–21.

30. Strongin, R. G. (1978), Numerical Methods on Multiextremal Problems. Nauka, Moscow.
31. Strongin, R. G. and Sergeyev, Ya. D. (2000), Global optimization with non-convex constraints:

Sequential and parallel algorithms. Kluwer Academic Publishers, Dordrecht.
32. Wang, X. and Chang, T. (1996), An improved univariate global optimization algorithm with

improved linear bounding functions. Journal of Global Optimization pp. 393–411.

